The Current webinar series June 13, 2018

Linking Soil Health to Water Quality

Extension

Francisco J. Arriaga, PhD
Assistant Professor and Extension State Specialist
UW-Extension and Dept. of Soil Science
Contact: farriaga@wisc.edu 608-263-3913

North Central Region Water Network Webinar Series June 13, 2018

Soil Health Indicators (or Soil Properties that Influence Function) What is soil health? Ability of a soil to function in a way that benefits humans and the environment. Soil Health Organic matter -biological activity -roots -organisms -

Water Quality Issues

Water Quality Concern

- · Surface water
 - Sediment
 - Phosphorus
 - Nitrogen
- Groundwater
 - Nitrogen
 - PesticidesPathogens

3

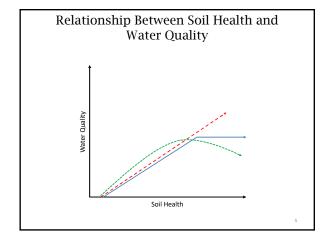
The Current webinar series June 13, 2018

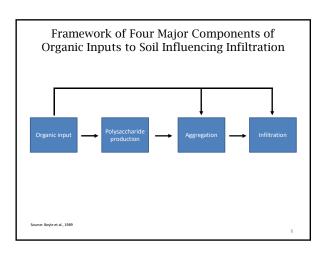
Connecting Water Quality Issues to Soil Health (Function)

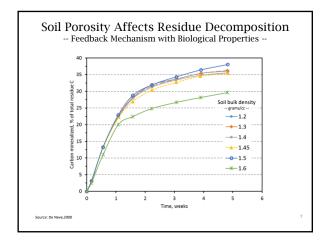
Water Quality Concern

Surface water

- Sediment
- Phosphorus
- Nitrogen
- Groundwater
 - Nitrogen
 - Pesticides
 - Pathogens


Soil Health Indicator


- · Surface water
 - Runoff/infiltration
 - Aggregation
 - Nutrient cycling

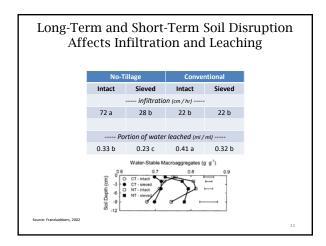

• Groundwater

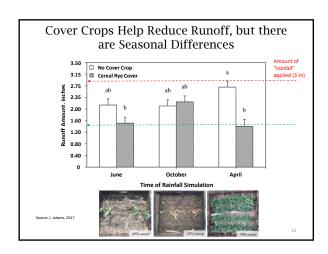
- Drainage/water retention
- Nutrient cycling
- Pesticide breakdown

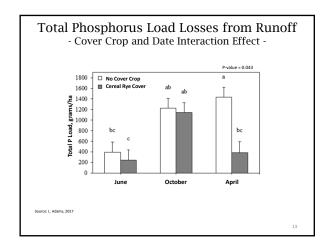
4

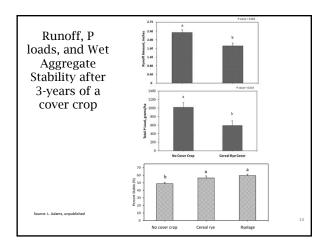
Enzyme Activity as an Indicator

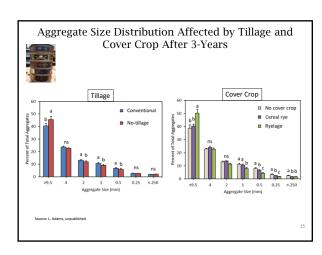
- Garcia et al. (1997) reported that dehydrogenase activity can be used as a sensitive indicator of soil degradation and microbial activity.
- Dehydrogenase activity of the 18 degraded soils studied was not correlated with soil organic matter content; but it was positively correlated with soil respiration, and biomass carbon.

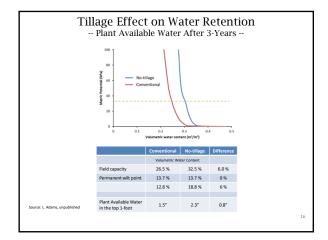

Source: Garcia et al., 1997


Effect of Fungi on Water Stable Aggregates


Aggregate Size (um)	Water-stable Aggregates (%)				
	No-tillage			Conventional Tillage	
	Control	Fungicide		Control	Fungicide
> 2000 (*)	66 a	42 b		43	39
2000 – 250	17 a	31 b		20	24
250 – 106 (*)	6 b	10 a		10	11
106 – 53	3 b	6 a		4	3
< 53 (*)	9	11		23	24


Source: Beare et al., 1997


Effect of Fungi on Water Stable Aggregates Total Carbohydrates & Mannose/Xylose Ratio No-tillage Conventional Tillage Control Fungicide Control Fungicide Total carb. (*) 1,881 a 1,563 b 911 959 M/X ratio (*) 2.26 b 1.50 a 1.73 0.97 • No difference in soil respiration between tillage managements.



The Current webinar series June 13, 2018

The Challenge

- Contrasting management systems and changes over time is possible within a specific location.
- Given the range in soils and climate within a country or region, developing thresholds for indicators is the main challenge.
- Other challenges include selecting "universal" soil indicators (e.g. properties to measure), establishing specific measurement procedures and sampling protocols, and develop robust linkages between soil health factors and water quality.

